BGP fundamentals

Lwin Lwin Aung

CCIE #53660 (R&S), PMP, CISSP

Sai Nyan Lynn Swe

CCIE #38501 (R&S, SP and DC), PMP, CISSP

Border Gateway Protocol

- A Routing Protocol used to exchange routing information between different networks
 - Exterior gateway protocol
- Described in RFC4271
 - RFC4276 gives an implementation report on BGP
 - RFC4277 describes operational experiences using BGP
- The Autonomous System is the cornerstone of BGP
 - It is used to uniquely identify networks with a common routing policy

BGP

- Path Vector Protocol
- Incremental Updates
- Many options for policy enforcement
- Classless Inter Domain Routing (CIDR)
- Widely used for Internet backbone
- Autonomous systems

ent CIDR) e

Path Vector Protocol

- BGP is classified as a *path vector* routing protocol (see RFC 1322)
 - A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination.

Definitions

- Transit carrying traffic across a network (Commercially: for a fee)
- Peering exchanging routing information and traffic Commercially: between similar sized networks, and for no fee) Default – where to send traffic when there is no explicit
 - match in the routing table

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique 32-bit integer (ASN)

Autonomous System Number

Range:				
0-4294967295	(32-bit range – RFC6793)			
	(0-65535 was original 16-bit range)			
Usage:				
0 and 65535	(IANA Reserved)			
1-64495	(public Internet)			
64496-64511	(documentation – RFC5398)			
64512-65534	(private use only)			
23456	(represent 32-bit range in 16-bit world)			
65536-65551	(documentation – RFC5398)			
65552-131071	(IANA Reserved)			
131072-458751	(public Internet)			
458752-4199999999	(IANA Reserved/Unallocated)			
420000000-4294967294	(private use only - RFC6996)			
4294967295	(IANA Reserved - RFC7300)			
 32-bit range representation specified in RFC5396 Defines "asplain" (traditional format) as standard notation 				

Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- The entire 16-bit ASN pool has been assigned to the RIRs
 - Around 39400 16-bit ASNs are visible on the Internet (this number is dropping slightly as 32-bit ASN announcements increase)
- Each RIR has also received a block of 32-bit ASNs
 - Out of 44500 assignments, around 36500 are visible on the Internet (May 2024)

See www.iana.org/assignments/as-numbers

Configuring BGP in Cisco IOS

This command enables BGP in Cisco IOS:

router bgp 64500

For ASNs > 65535, the AS number can be entered in either plain or dot notation:

router bgp 131076

Or

router bgp 2.4

IOS displays ASNs in plain notation by default

Dot notation is optional (and NOT recommended):

router bgp 2.4 bgp asnotation dot

Configuring BGP in JunOS

This command sets the local autonomous system number

set routing-options autonomous-system 131076

All BGP configuration is then carried out under:

edit protocols bgp

JunOS displays ASNs in plain notation by default

Dot notation is optional (and NOT recommended):

set routing-options autonomous-system asdot-notation 2.4

BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs it in the routing table (RIB)
- Best path is sent to external BGP neighbours
- Policies are applied by influencing the best path selection

Constructing the Forwarding Table

BGP "in" process

- Receives path information from peers
- Results of BGP path selection placed in the BGP table

"best path" flagged

- □ BGP "out" process
 - Announces "best path" information to peers
- Best path stored in Routing Table (RIB) if:
 - Prefix and prefix length are unique (after best path selection) and
 - Lowest "protocol distance"

Best paths in the RIB are installed in forwarding table (FIB)

Constructing the Forwarding Table

EBGP & IBGP

- BGP is used
 - Internally (IBGP)
 - Externally (EBGP)
- IBGP used to carry
 - Some/all Internet prefixes across network operator backbone
 - ISP's customer prefixes
- EBGP used to
 - Exchange prefixes with other ASes
 - Implement routing policy

BGP/IGP model used in service provider networks

Model representation

External BGP Peering (EBGP)

Between BGP speakers in different AS Should be directly connected Never run an IGP between EBGP peers

Configuring External BGP

Router A in AS64500

interface FastEthernet 5/0 ip address 102.102.10.24255.255.255.240 Local ASN router bgp 64 address-family ipv4 < network 100.100.8.0 mask 255.255.252.0 neighbor 102.102.10.1 remote-as 64501 - Remote ASN neighbor 102.102.10.1 prefix-list RouterC-in in neighbor 102.102.10.1 prefix-list RouterC-out out neighbor 102.102.10.1 activate

ip address of Router C ethernet interface

ip address on ethernet interface

Select IPv4 or IPv6

Inbound and outbound filters

Lab Access guide

- Each students can login to individual lab

Username(WebUI)	Password(WebUI)	IP Address
admin	Optimity@123	103.103.194.131 - 220

	AS800-R8	AS800-R8 — -telnet 103.103.194.75 32776 — 102×24				
[AS800-R8# [AS800-R8# [AS800-R8#sh ip int brief	e una					
Interface	IP-Address	OK? Method Status	Protocol			
Ethernet0/0	200,200.89.8	YES manual up	up			
Ethernet0/1	200.200.18.8	YES manual up	up			

- Configure EBGP config at Relevant Routers

router bgp 800 bgp router-id 8.8.8.8 bgp log-neighbor-changes neighbor 200.200.18.1 remote-as 9654 neighbor 200.200.18.1 description MMIX neighbor 200.200.89.9 remote-as 900 neighbor 200.200.89.9 description AS900

Wr mem

Check EBGP status

sh ip int brief | e una

Sh run | s router bgp Sh ip bgp summary Sh ip bgp

[AS800-R8#sh ip	bgp s	summary					
BGP router ide	ntifi∈	er 8.8.8.8,	local A:	S number	800		
BGP table vers	ion is	s 1, main ro	buting ta	able vers	ion 1		
Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ L
200.200.18.1	4	9654	Θ	0	1	0	0 r
200.200.89.9	4	900	0	0	1	0	0 r

AS800-R8#sh ip bgp
AS800-R8#sh ip route bgp
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override

Gateway of last resort is not set

Jp/Down State/PfxRcd Tever Idle Tever Idle

Internal BGP (IBGP)

- BGP peer within the same AS
- Not required to be directly connected
 - IGP takes care of inter-BGP speaker connectivity
- IBGP speakers must be fully meshed:
 - They originate connected networks
 - They pass on prefixes learned from outside the AS
 - They do not pass on prefixes learned from other IBGP speakers

Internal BGP (IBGP)

- BGP peer within the same AS
- Not required to be directly connected
 - IGP takes care of inter-BGP speaker connectivity
- IBGP speakers must be fully meshed:
 - They originate connected networks
 - They pass on prefixes learned from outside the AS
 - They do not pass on prefixes learned from other IBGP speakers

Internal BGP Peering (IBGP)

Topology independent

Each IBGP speaker must peer with every other IBGP speaker in the AS as per 🔶

30

Peering between Loopback Interfaces

Peer with loop-back interface

- Loop-back interface does not go down ever!
- Do not want IBGP session to depend on state of a single interface or the physical topology

Configuring Internal BGP

Router A in AS64500

ip address on loopback interface

Configuring Internal BGP

Router B in AS64500

```
interface loopback 0
 ip address 105.3.7.2 255.255.255.255
                       Local ASN
router bgp 6
 address-family ipv4
 network 100.100.1.0 mask 255.255.255.0
 neighbor 105.3.7.1 remote-as 64500 - Local ASN
 neighbor 105.3.7.1 update-source loopback0
 neighbor 105.3.7.1 activate
 neighbor 105.3.7.3 remote-as 64500
 neighbor 105.3.7.3 update-source loopback0
 neighbor 105.3.7\3 activate
           ip address of Router A
```

loopback interface

ip address on loopback interface

Route Reflectors

Scaling the IBGP mesh

Scaling the IBGP mesh

Avoid ½n(n-1) IBGP mesh

 $n = 1000 \Rightarrow nearly$ half a million **IBGP** sessions!

Two solutions

- Route reflector: simpler to deploy and run
- BGP Confederation: more complex, has corner case advantages

Route Reflector: Principle

Route Reflector: Rules

- Reflector receives path from clients and non-clients
- Selects best path
- If best path is from client, reflect to other clients and non-clients
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456

Route Reflector: Benefits

Solves IBGP mesh problem Packet forwarding is not affected Normal BGP speakers co-exist Multiple reflectors for redundancy Easy migration Multiple levels of route reflectors

Route Reflector: Cisco IOS Configuration

Router D configuration:

```
router bgp 64500
address-family ipv4
```

neighbor 100.64.3.4 remote-as 64500 neighbor 100.64.3.4 route-reflector-client neighbor 100.64.3.5 remote-as 64500 neighbor 100.64.3.6 route-reflector-client neighbor 100.64.3.6 remote-as 64500

. . .

Inserting prefixes into BGP

Two ways to insert prefixes into BGP redistribute static network command

Inserting prefixes into BGP – redistribute static

Configuration Example:

```
router bgp 64500
address-family ipv4
 redistribute static
ip route 100.64.32.0 255.255.254.0 serial0
```

- Static route must exist before redistribute command will work
- Forces origin to be "incomplete"
- Care required!

Inserting prefixes into BGP – network command

Configuration Example

router bgp 64500 address-family ipv4 network 100.64.32.0 mask 255.255.254.0 ip route 100.64.32.0 255.255.254.0 serial0

A matching route must exist in the routing table before the network is announced Forces origin to be "IGP"

Summary BGP neighbour status (Cisco IOS IPv4)

Router6>show ip bgp summary BGP router identifier 10.0.15.246, local AS number 10 BGP table version is 16, main routing table version 16 7 network entries using 819 bytes of memory 14 path entries using 728 bytes of memory 2/1 BGP path/bestpath attribute entries using 248 bytes of memory 0 BGP route-map cache entries using 0 bytes of memory 0 BGP filter-list cache entries using 0 bytes of memory BGP using 1795 total bytes of memory BGP activity 7/0 prefixes, 14/0 paths, scan interval 60 secs

Neighbor	v	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
10.0.15.241	4	10	9	8	16	0	0	00:04:47	2
10.0.15.242	4	10	6	5	16	0	0	00:01:43	3 2
10.0.15.243	4	10	9	8	16	0	0	00:04:49	2
	► ►		×	1		1	1		
	\		\	< /		/	/		
	BGP Ve	ersio	on Upo ano	dates sen d received	nt Updat d	tes wa	aiting		

Summary BGP Table (Cisco IOS IPv4)

Router6>sh ip bgp BGP table version is 18, local router ID is 10.0.15.246 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, r RIB-failure, S Stale, m multipath, b backup-path, f RT-Filter, x best-external, a additional-path, c RIB-compressed, Origin codes: i - IGP, e - EGP, ? - incomplete RPKI validation codes: V valid, I invalid, N Not found

	Network	Next Hop	Metric	LocPrf	Weight
*>i	10.0.0/26	10.0.15.241	0	100	0
*>i	10.0.0.64/26	10.0.15.242	0	100	0
*>i	10.0.0.128/26	10.0.15.243	0	100	0
*>i	10.0.0.192/26	10.0.15.244	0	100	0
*>i	10.0.1.0/26	10.0.15.245	0	100	0
*>	10.0.1.64/26	0.0.0.0	0		32768
*>i	10.0.1.128/26	10.0.15.247	0	100	0
*>i	10.0.1.192/26	10.0.15.248	0	100	0
*>i	10.0.2.0/26	10.0.15.249	0	100	0
*>i	10.0.2.64/26	10.0.15.250	0	100	0
*>i	10.0.2.128/26	10.0.15.251	0	100	0
*>i	10.0.2.192/26	10.0.15.252	0	100	0
*>i	10.0.3.0/26	10.0.15.253	0	100	0
*>i	10.0.3.64/26	10.0.15.254	0	100	0

Path

Summary

- BGP path vector protocol Multi-protocol (IPv4 & IPv6) IBGP versus EBGP Stable IBGP – peer with loopbacks Announcing prefixes & aggregates

Configure IBGP config at Relevant Routers

IGW-R1 router bgp 9654 bgp router-id 1.1.1.1 bgp log-neighbor-changes neighbor 4.4.4.4 remote-as 9654 neighbor 4.4.4.4 description RR neighbor 4.4.4.4 update-source Loopback0 neighbor 4.4.4.4 next-hop-self neighbor 5.5.5.5 remote-as 9654 neighbor 5.5.5.5 description RR neighbor 5.5.5.5 update-source Loopback0 heighbor 5.5.5.5 next-hop-self neighbor 5.5.5.5 next-hop-self neighbor 200.200.18.8 remote-as 800 neighbor 200.200.18.8 description AS800

Sh ip int brief | e una Sh ip ospf neigh Sh ip ospf int brief

IGW-R2

router bgp 9654 bgp router-id 2.2.2.2 bgp log-neighbor-changes neighbor 4.4.4.4 remote-as 9654 neighbor 4.4.4.4 description RR neighbor 4.4.4.4 update-source Loopback0 neighbor 4.4.4.4 next-hop-self neighbor 5.5.5 remote-as 9654 neighbor 5.5.5 description RR neighbor 5.5.5.5 update-source Loopback0 Neighbor 5.5.5.5 next-hop-self

Sh ip int brief | e una Sh ip ospf neigh Sh ip ospf int brief

IGW-R2 router bgp 9654

bgp router-id 2.2.2.2 bgp log-neighbor-changes neighbor 4.4.4.4 remote-as 9654 neighbor 4.4.4.4 description RR neighbor 4.4.4.4 update-source Loopback0 neighbor 4.4.4.4 next-hop-self neighbor 5.5.5 remote-as 9654 neighbor 5.5.5 description RR neighbor 5.5.5.5 update-source Loopback0 heighbor 5.5.5.5 next-hop-self

Sh ip int brief | e una Sh ip ospf neigh Sh ip ospf int brief

- Configure IBGP config at Route Reflector (R4 & R5)

Core-R4 router bgp 9654 bgp router-id 4.4.4.4 bgp cluster-id 96.54.96.54 bgp log-neighbor-changes neighbor 1.1.1.1 remote-as 9654 neighbor 1.1.1.1 description IGW-1 neighbor 1.1.1.1 update-source Loopback0 neighbor 1.1.1.1 route-reflector-client

neighbor 2.2.2.2 remote-as 9654 neighbor 2.2.2.2 description IGW-2 neighbor 2.2.2.2 update-source Loopback0 neighbor 2.2.2.2 route-reflector-client

neighbor 3.3.3.3 remote-as 9654 neighbor 3.3.3.3 description PEER-R3 neighbor 3.3.3.3 update-source Loopback0 neighbor 3.3.3.3 route-reflector-client

neighbor 6.6.6.6 remote-as 9654 neighbor 6.6.6.6 description PE-6 neighbor 6.6.6.6 update-source Loopback0 neighbor 6.6.6.6 route-reflector-client

neighbor 7.7.7.7 remote-as 9654 neighbor 7.7.7.7 description PE-7 neighbor 7.7.7.7 update-source Loopback0 neighbor 7.7.7.7 route-reflector-client

neighbor 5.5.5.5 remote-as 9654 neighbor 5.5.5.5 description RR neighbor 5.5.5.5 update-source Loopback0 Sh ip int brief | e una Sh ip ospf neigh Sh ip ospf int brief

Task – Create Loopback 100 with IP address of 100.100.100/24 at Core-R4 router. Task - Advertised the loopback interface by BGP Verify – Check BGP status and advertised status

Core-R4(config-router)#do sh run int lo 100 interface Loopback100 ip address 100.100.100.100 255.255.255.0 end

=========

Core-R4(config-router)# router bgp 9654 network 100.100.100.0 mask 255.255.255.0

Core-	-R4	#sh	ip	b bg	şρ		
BGP t	iab Io	le v Rođi	ver	°S10	n n	15	2,
Statt	15 (coai	es:	S r	SU PT	ppr R_f	es ai
				X	be	st-	ex
Origi	n (cod	es:	i	-	IGF),``
RPKĪ	va	lid	ati	on	со	des	81
w	Net	two	nk aa	100		10.	N
r> Cono	100	9.1) #	00.	100).0	7.24	F U

Core-R4#sh ip bgp neighbors 1.1.1.1 adver	tised-routes
BGP table version is 2, local router ID i	s 4.4.4.4
Status codes: s suppressed, d damped, h h	istory, * valid, > best, i - internal,
r RIB-failure, S Stale, m m	ultipath, b backup-path, f RT-Filter,
x best-external, a addition	al-path, c RIB-compressed,
Origin codes: i - IGP, e - EGP, ? - incom	plete
RPKI validation codes: V valid, I invalid	, N Not found
Network Next Hop	Metric LocPrf Weight Path
*> 100.100.100.0/24 0.0.0.0	0 32768 i

otal number of prefixes i

Task – Create Loopback 101 with IP address of 101.101.101/24 at AS1100 router. Task - Advertised the loopback interface by BGP Verify – Check BGP status and advertised status

Task – Create Loopback 88 with IP address of 88.88.88.88/16 at AS800 router. Task - Advertised the loopback interface by BGP Verify – Check BGP status and advertised status

