APNIC

Securing Internet Routing with RPKI

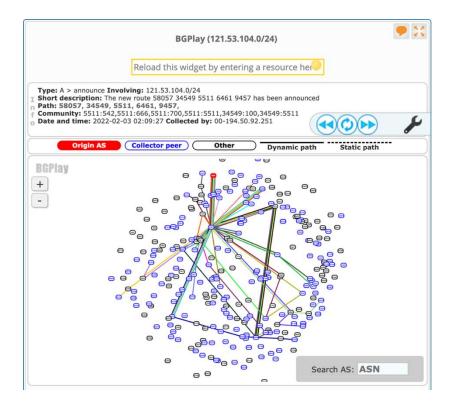
(::**ʃ**::ʃ::ʃ::ʃ::ʃ

- AS12389 hijacks one of the Apple's prefix 26 Jul 2022
 - Apple's usual announcement 17.0.0/9
 - . More specific 17.70.96.0/19 was hijacked
 - Main Upstream leakers
 - AS7473 (Singtel)
 - AS1273 (Vodafone UK)
 - . AS4826 (Vocus)

Apple announced 17.70.96.0/21 to mitigate

- · Affected for more than 5 hours
- AS12389 withdrew the announcement after 12+ hours

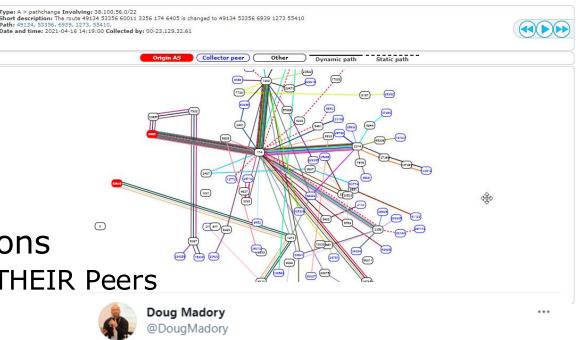
Possible BGP hijack Beginning at 2022-07-26 21:25:07, we detected a possible BGP hijack. Prefix 17.0.0.0/9, Normally announced by AS714 APPLE-ENGINEERING, US Starting at 2022-07-26 21:25:07, a more specific route (17.70.96.0/19) was announced by ASN 12389 This was detected by 77 BGPMon peers. Expected Start time: 2022-07-26 21:25:07 UTC Expected prefix: 17.0.0.0/9 Expected ASN: 714 March (APPLE-ENGINEERING, US) **Event Details** Detected advertisement: 17.70.96.0/19 Detected Origin ASN 12389 (ROSTELECOM-AS, RU) Detected AS Path 49673 12389 AS714 Apple Inc. **Potential Victim** Potential Attacker: AS12389 PJSC Rostelecom Event type origin hijack (submoas)


Prefixes:

17.0.0.0/9 17.70.96.0/19

- Hackers steal 1.9m worth of crypto currency 03 Feb 2022
 - AS38099 (Kakao Corp) hosts KLAYswap on 121.53.104.157
 - AS9457 (Dreamline Co) delegated 121.53.104.0/23 to Kakao Corp
 - It's announced to KINX only
 - No ROA coverage
 - Attacker announced **121.53.104.0/24** in global routing table with **AS9457**
 - AS_PATH: 40630 6939 6461 9457
 - Managed to announce through Zayo
 - Traffic rerouted to hackers' network
 - More detailed analysis:

https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/



- AS55410 Leaks ~30k Prefixes 16 Apr 2021
- Approx 4k ASN Affected
 - . Many with No Route Objects
 - Only ~4k Prefixes had ROA
- Main Upstream leakers
 - AS9498(Bharti Airtel) and AS1273 (Vodafone UK)
- Spread mostly VIA IX connections
 - Some of which re-propagated to THEIR Peers (AS6939)

Radar by Qrator @Qrator_Radar

April 16, 2021 - AS55410 - VIL-AS-AP (Vodafone Idea) hijacked 37739 prefixes - countries affected 164 - ASNs affected 4012 - duration 1:30:00

Large BGP routing leak out of India this morning.

AS55410 mistakenly announced over 30,000 BGP prefixes causing a 13x spike in inbound traffic to their network according to @kentikinc netflow data.

https://bgpstream.com/event/271479 https://bgpstream.com/event/271478

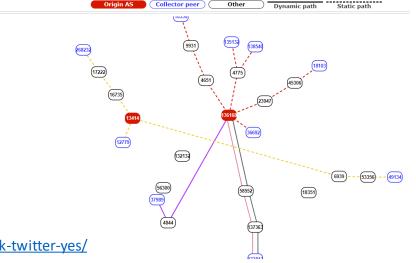
APNIC

Headlines

- AS136168 attempts to hijack Twitter (AS13414) **05 Feb 2021** lacksquare
- MM Military orders blocking of Twitter/Instagram
 - AS136168 originated 104.244.42.0/24
 - Out of the 91xIPv4 and 3XIPv6 prefixes • Twitter/AS13414 originates? ~ dig twitter.com +short 104.244.42.193
 - Good:
 - Only 6 peers (AS36692, AS4844, AS4775, AS23947, AS132132, AS58552) accepted the announcement
 - Probably other networks doing some IRR based filtering
 - Bad:
 - Why weren't the above 6 peers filtering inbound?
 - Why didn't Twitter create ROAs for their prefixes?
 - More detailed analysis: https://www.manrs.org/2021/02/did-someone-try-to-hijack-twitter-yes/

Event Details

Detected advertisement: 104.244.42.0/24


Detected Origin ASN 136168 (CAMPANA-AS-AP Campana MYTHIC Co. Ltd., MM

Detected AS Path 18356 9931 4651 136168 Detected by number of BGPMon peers: 6

Path: 138540 4775 13616

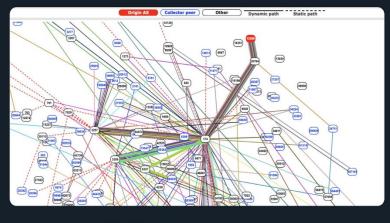
Type: A > announce Involving: 104.244.42.0/24 Short description: The new route 138540 4775 136168 has been announced

Date and time: 2021-02-05 15:51:51 Collected by: 00-27.110.222.178 https://bgpstream.com/event/268261

(::**ʃ::**ʃ::ʃ::ʃ

(::**ʃ**::ʃ::ʃ::ʃ::ʃ:/

Not so funny 😕 – **1 Apr 2020** ullet


- AS12389 (Rostelecom) hijacks/leaks 8K+ more specifics
 - Facebook, Cloudflare, AWS, Akamai, Google, Digital Ocean....
 - ~200 ASNs
- Some peers accepted/propagated the leaks:
 - AS20764 (Rascom) \rightarrow AS174 (Cogent) \rightarrow AS3356 (Level3)

Created Hijack	AS12389 - ROSTELECOM-AS - [RU] 104.18.216.0/21	A\$13335 - CLOUDFLARENET - [US]: 265 - 104.18.208.0/20 from 2020-04-01 19:33 to 2020-04-01 20:04 [high] 265 - 104.16.0.0/12 from 2020-04-01 19:33 to 2020-04-01 20:04 [high]	2020-04-01 19:33	0:31:00
Created Hijack	AS12389 - ROSTELECOM-AS - [RU] 104.17.128.0/21	AS13335 - CLOUDFLARENET - [US]: 269 - 104.17.128.0/20 from 2020-04-01 19:33 to 2020-04-01 20:04 [high] 269 - 104.16.0.0/12 from 2020-04-01 19:33 to 2020-04-01 20:04 [high]	2020-04-01 19:33	0:31:00
Created Hijack	AS12389 - ROSTELECOM-AS - [RU] 104.18.184.0/21	AS13335 - CLOUDFLARENET - [US]: 266 - 104.18.176.0/20 from 2020-04-01 19:33 to 2020-04-01 20:04 [high] 266 - 104.16.0.0/12 from 2020-04-01 19:33 to 2020-04-01 20:04 [high]	2020-04-01 19:33	0:31:00
Created Hijack	AS12389 - ROSTELECOM-AS - [RU] 95.100.200.0/24	AS20940 - AKAMAI-ASN1 - [EU]: 327 - 95.100.200.0/22 from 2020-04-01 19:33 to 2020-04-01 20:04 [high] AS34164 - AKAMAI-LON - [GB]: 327 - 95.100.0.0/15 from 2020-04-01 19:33 to 2020-04-01 20:04 [high]	2020-04-01 19:33	0:31:00

BGPmon.net @bapmon

Earlier this week there was a large scale BGP hijack incident involving AS12389 (Rostelecom) affecting over 8,000 prefixes. Many examples were just posted on @bgpstream, see for example this example for @Facebook bgpstream.com/event/230837

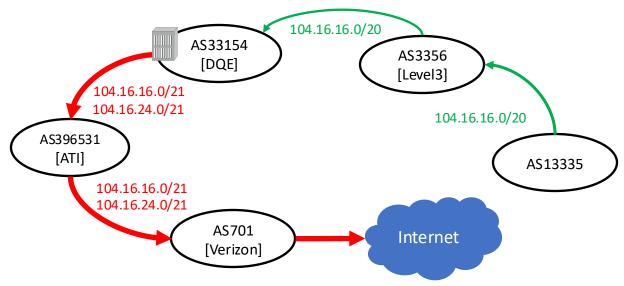
2:51 am · 6/4/20 · Twitter Web App

243 Retweets 333 Likes

Quick dumps through the data, showing about 2400 ASns (networks) affected. Cloudflare being hit the hardest. Top 20 of affected ASns below sourceAS=13335 sourceAS=4323 sourceAS=7018 sourceAS=63949 104.16.16.0/20 sourceAS=2828 AS33154 sourceAS=26769 AS3356 [DQE] sourceAS=209 [Level3] sourceAS=6428 sourceAS=16509 104.16.16.0/20 sourceAS=45899 sourceAS=852 sourceAS=12576 AS13335 sourceAS=20473 sourceAS=54113 sourceAS=55081

Andree Toonk

 $cource \Lambda S = 201 A$


6:08 AM - 24 Jun 2019 from Vancouver. British Columbia

https://twitter.com/atoonk/status/1143143943531454464/photo/1

@atoonk

BGP Optimizers impact Internet – June 2019

- AS13335 hosted sites were not reachable during the leak
 - About 15% of their global traffic!!
 - $\sim 120 \text{mins}$

Headlines

ullet

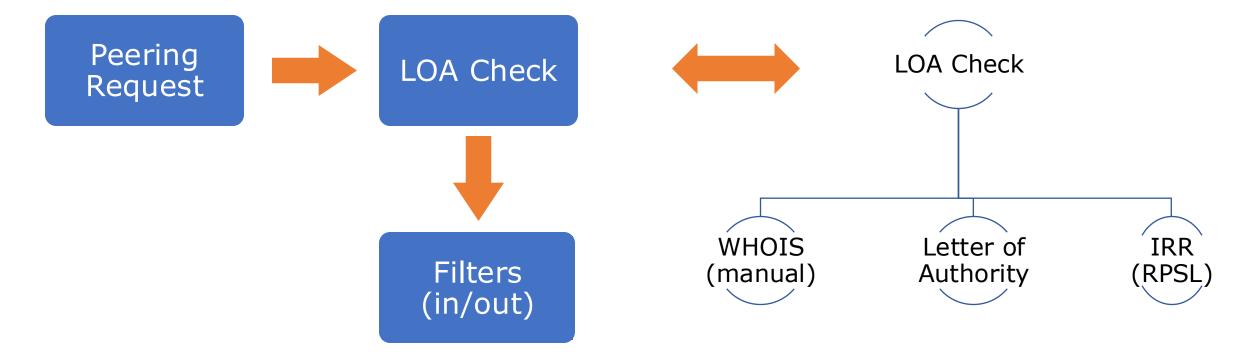
Follow

Why do we keep seeing these?

- Because NO ONE is in charge?
 - No single authority model for the Internet
 - No reference point for what's right in routing
- Routing works by RUMOUR
 - Tell what you know to your neighbors, and Learn what your neighbors know
 - Assume everyone is correct (and *honest*)
 - . Is the originating network the rightful owner?

Why do we keep seeing these?

- Routing works in REVERSE
 - Outbound advertisement affects inbound traffic
 - Inbound (Accepted) advertisement influence outbound traffic
- Routing is VARIABLE
 - The view of the network depends on where you are
 - Different routing outcomes at different locations
 - ${\scriptstyle \Box}~\sim$ no reference view to compare the local view ${\scriptstyle \bigotimes}$


How do we address these?

Good Hygiene ~ Filter Filter Filter!

- your peers, upstream(s), and customers
 - Prefix filters/Prefix limit
 - · AS-PATH filters/AS-PATH limit
 - RFC 8212 BGP default reject or something similar

APNIC

Current practice

Tools & Techniques

Look up whois

verify holder of a resource

whois -h whois.apnic.net 202.125.96.0

% [whois.apnic.net] % Whois data copyright terms http://www.apnic.net/db/dbcopyright.html

Information related to '202.125.96.0 - 202.125.96.255'

Abuse contact for '202.125.96.0 - 202.125.96.255' is 'training@apnic.net'

<u></u>	
inetnum:	202.125.96.0 - 202.125.96.255
netname:	APNICTRAINING-AP
descr:	Prefix for APNICTRAINING LAB D
country:	AU
admin-c:	AT480–AP
tech-c:	AT480–AP
status:	ALLOCATED NON-PORTABLE
mnt-by:	MAINT-AU-APNICTRAINING
<pre>mnt-irt:</pre>	IRT-APNICTRAINING-AU
last-modified:	2016-06-17T00:17:28Z
source:	APNIC
irt:	IRT-APNICTRAINING-AU
	6 Cordelia Street
address:	South Brisbane
address:	OLD 4101
e-mail:	training@apnic.net
	training@apnic.net
admin-c:	AT480–AP
tech-c:	AT480-AP
auth:	# Filtered
mnt-by:	# FILLEFEG MAINT-AU-APNICTRAINING
	2013–10–31T11:01:10Z
source:	APNIC

role: address: address:	APNIC Training 6 Cordelia Street South Brisbane
address:	QLD 4101
country:	AU
phone:	+61 7 3858 3100
fax—no:	+61 7 3858 3199
e-mail:	training@apnic.net
admin—c:	JW3997-AP
tech-c:	JW3997–AP
nic-hdl:	AT480-AP
mnt-by:	MAINT-AU-APNICTRAINING
last-modified:	2017-08-22T04:59:14Z
source:	APNIC
% Information re	elated to '202.125.96.0/24AS131107'
route:	202.125.96.0/24
descr:	Prefix for APNICTRAINING LAB DC
origin:	AS131107
mnt-by:	MAINT-AU-APNICTRAINING
country:	AU
last-modified:	2016-06-16T23:23:00Z
source:	APNIC

(::*s*::*s*::*s*::*s*::*s*)

APNIC

Tools & Techniques

• IRR

- Helps auto generate prefix/as-path filters using RPSL tools
 - Filter out route advertisements not described in the registry

~
└─> bgpq4 -Al PREF-V4-IN AS24016
no ip prefix-list PREF-V4-IN
ip prefix-list PREF-V4-IN permit 103.197.164.0/22 le 24
ip prefix-list PREF-V4-IN permit 115.84.128.0/19 le 24
ip prefix-list PREF-V4-IN permit 202.21.176.0/20 le 24
ip prefix-list PREF-V4-IN permit 220.158.220.0/22 le 24

bgpq4 -6Al PREF-V6-IN AS24016 no ipv6 prefix-list PREF-V6-IN ipv6 prefix-list PREF-V6-IN permit 2401:8300::/32 le 40 ipv6 prefix-list PREF-V6-IN permit 2401:8300:f000::/47 ge 48 le 48 ipv6 prefix-list PREF-V6-IN permit 2401:8300:f002::/48

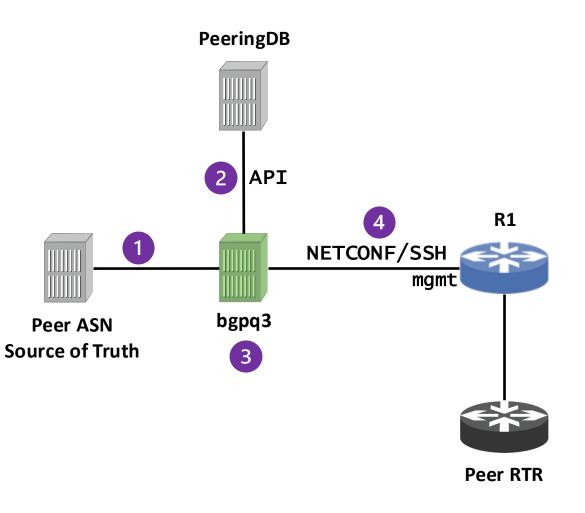
bgpq4 –Al PREF-V4-IN AS24016:AS-ALL no ip prefix-list PREF-V4-IN ip prefix-list PREF-V4-IN permit 36.255.104.0/23 le 24 ip prefix-list PREF-V4-IN permit 103.71.57.0/24 ip prefix-list PREF-V4-IN permit 103.76.2.0/24 ip prefix-list PREF-V4-IN permit 103.84.134.0/24 ip prefix-list PREF-V4-IN permit 103.103.66.0/24 ip prefix-list PREF-V4-IN permit 103.110.109.0/24 ip prefix-list PREF-V4-IN permit 103.110.110.0/23 le 24 ip prefix-list PREF-V4-IN permit 103.119.75.0/24 ip prefix-list PREF-V4-IN permit 103.143.252.0/24 ip prefix-list PREF-V4-IN permit 103.191.77.0/24 ip prefix-list PREF-V4-IN permit 103.197.164.0/22 le 24 ip prefix-list PREF-V4-IN permit 115.84.128.0/19 le 24 ip prefix-list PREF-V4-IN permit 202.21.176.0/20 le 24 ip prefix-list PREF-V4-IN permit 220.158.220.0/22 le 24

bgpq4 -3f 24016 -l ROL-IN AS24016:AS-ALL
no ip as-path access-list ROL-IN
ip as-path access-list ROL-IN permit ^24016(_24016)*\$
ip as-path access-list ROL-IN permit ^24016(_[0-9]+)*_(132218|133742|136238|137056)\$
ip as-path access-list ROL-IN permit ^24016(_[0-9]+)*_(137981|150125)\$

bgpq4 Demo

Aside: bgpq4/bgpq3

- bgpq4 has some advantages over bgpq3
 - Faster response time
 - Included Arista, MikroTik
 - More flags and syntaxes see man page or help option
- Installation
 - Ubuntu/Debian: sudo apt install [bgpq4/bgpq3]
 MacOS: brew install [bgpq4/bgpq3]
- More info:
 - <u>https://github.com/bgp/bgpq4</u>
 - <u>https://github.com/snar/bgpq3</u>



Automatic Filtering with bgpq4

- 1 Collect list of Peer ASN (API, text file or other means)
- 2 API Call: Get the AS-SET of Peer ASN from PeeringDB
- 3 bgpq3:
 - Generate prefix/asn filters
 - Compare with the current filter
 - If changed, override the saved filter with the new one

Push the new filter to the router with NETCONF/SSH

Limitation of Prefix-list and AS-PATH filtering

- Prefix-list and AS-PATH filters are suitable to filter
 - downstream customers
 - Peers
- Not ideal to filter routes in the global BGP table
 - Wrong prefixes can be injected anytime
 - . Due to mistakes (fat finger)
 - Intentionally (Hijack)
- To preventing invalid routes from internet, RPKI will be able to help

Tools & Techniques

- Problem(s) with IRR
 - No single authority model
 - . How do I know if a RR entry is genuine and correct?
 - . How do I differentiate between a current and a lapsed entry?
 - Many RRs
 - . If two RRs contain conflicting data, which one do I trust and use?
 - Incomplete data Not all resources are registered in an IRR
 - . If a route is not in a RR, is the route invalid or is the RR just missing data?
 - Scaling
 - . How do I apply IRR filters to upstream(s)?

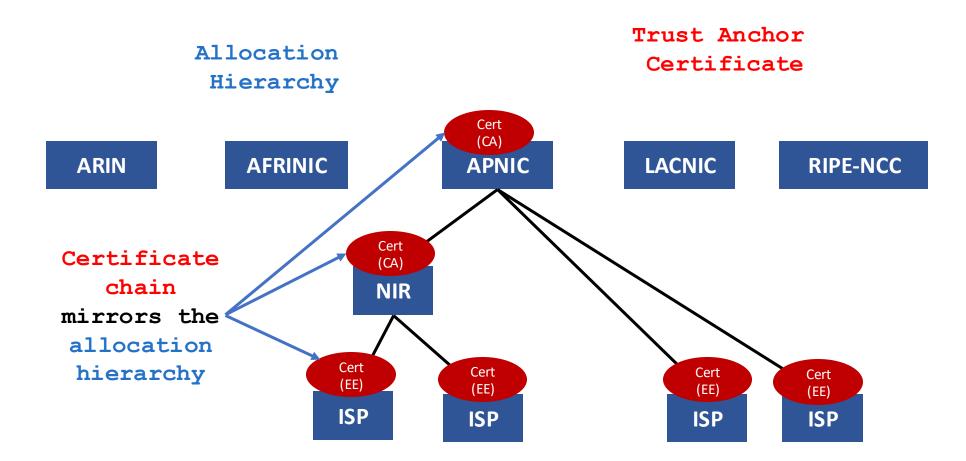
Back to basics – identify GOOD

- Could we use a digital signature to convey the *authority to* use?
 - Private key to sign the authority, and
 - Public key to validate the authority
- ~ If the holder of the resource has the private key, it can sign/authorize the use of the resource

- A cryptographic framework that
 - Allows internet resource (IPv4, IPv6, ASNs) holders to create ROA
 Cryptographically validate the prefix and its origin ASN
- ROA Route Origin Authorization
 - Digital object generated cryptographically by the resource holder
 Published in the RPKI repository
- ROV Route Origin Validation
 - Which ASN(s) have the authority to originate the prefix?

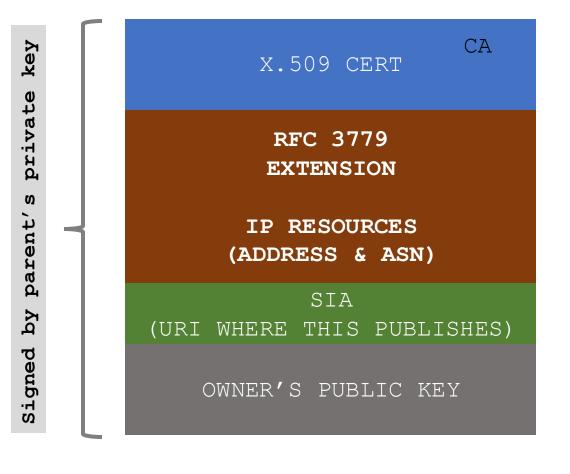
How about trust?

- How do we build a chain of trust in this framework??
 - Follow the resource allocation/delegation hierarchy



• To describe the address allocation using digital certificates

RPKI Chain of Trust



RPKI Chain of Trust

- RIRs hold a self-signed root certificate for all the resources they have in the registry
 - . they are the *Trust Anchor* for the system
- The root certificate signs the resource certificates for endholder allocations
 - binds the resources to the end-holders public key
- Any attestations signed by the end-holder's private key, can now be validated up the chain of trust

RPKI profile ~ Resource Certificates

- RFC 3779 extensions binds a list of resources (IPv4/v6,ASN) to the subject of the certificate (private key holder)
- SIA (subject information access) contains a URI that identifies the publication point of the objects signed by the subject of the cert.

- When an address holder A (*IRs) allocates resources (IP address/ASN) to B (end holders)
 - A issues a resource certificate that binds the allocated address with B's public key, all signed by A's (CA) private key
 - The resource certificate proves the holder of the private key (B) is the legitimate holder of the number resource!

Route Origin Authorization (ROA)

- (B) can now sign *authorities* using its private key
 which can be validated by any third party against the TA
- For routing, the address holder can *authorize* a network (ASN) to *originate* a route, and sign this permission with its private key (~ROA)

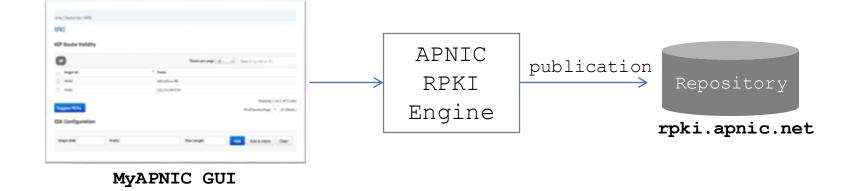
Route Origin Authorization (ROA)

- Digitally signed object
 - Binds list of prefixes and the nominated ASN
 - *can be verified cryptographically*

Prefix	203.176.32.0/19
Max-length	/24
Origin ASN	AS17821

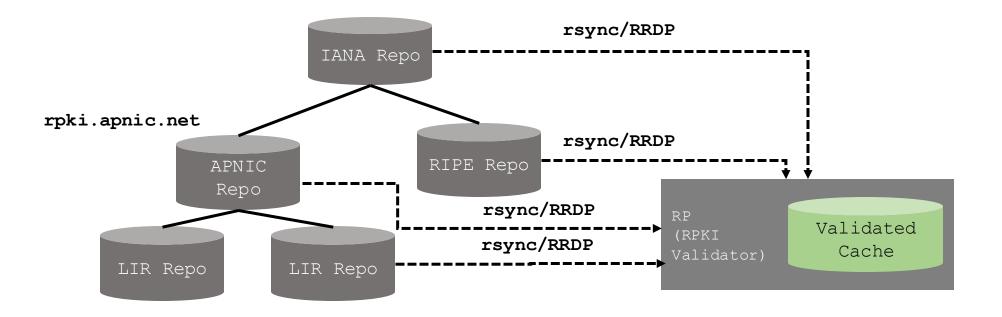
• ** Multiple ROAs can exist for the same prefix

What can RPKI do?


- Authoritatively proof:
 - Who is the legitimate owner of an address, and
 - Identify which ASNs have the permission from the holder to originate the address
- Can help:
 - prevent route hijacks/mis-origination/misconfiguration

RPKI Components

- Certificate Authority (CA) that issues resource certificates to end-holders
- Publishes the objects (ROAs) signed by the resource certificate holders

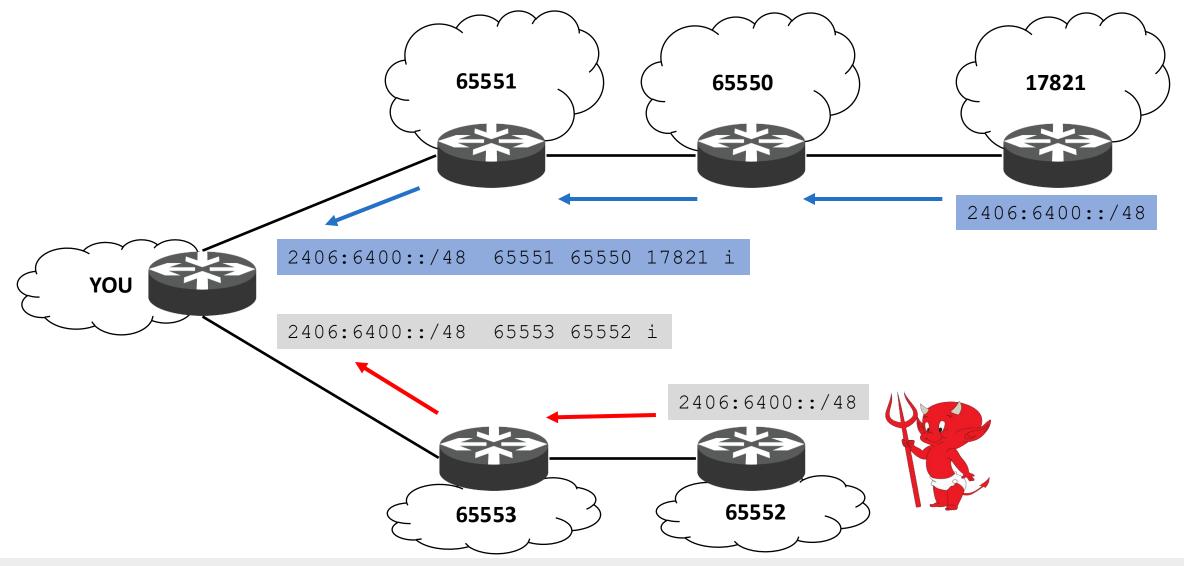


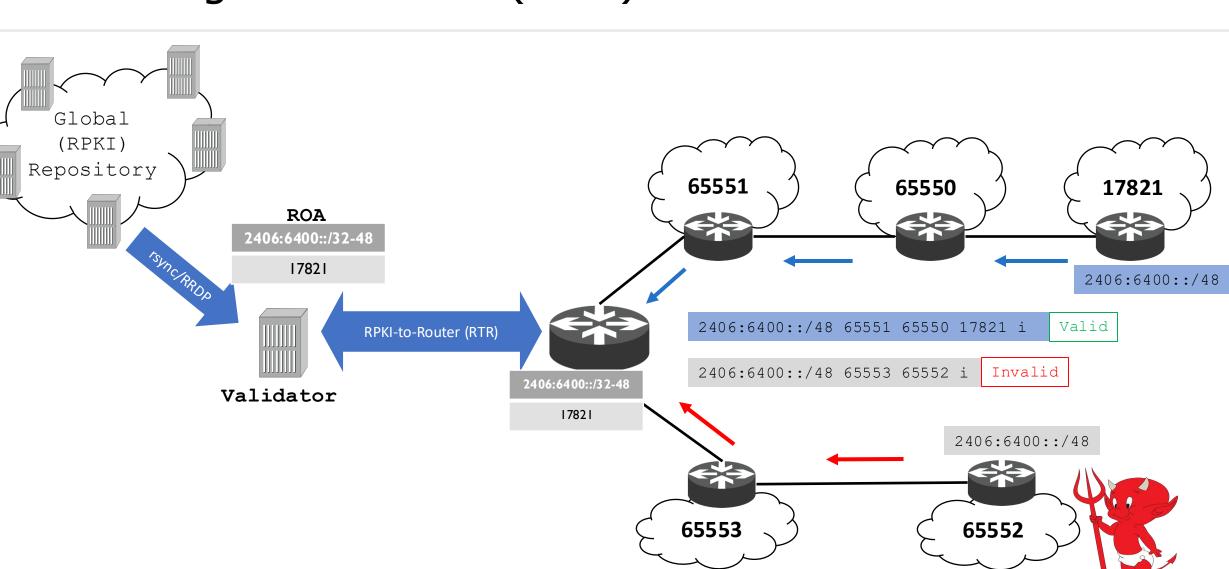
RPKI Components

• Relying Party (RP)

- RPKI Validator that gathers data (ROA) from the distributed RPKI repositories
- Validates each entry's signature against the TA to build a "Validated cache"

RPKI Service Models


- Hosted model:
 - The RIR (APNIC) runs the CA functions on members' behalf
 - . Manage keys, repo, etc.
 - . Generate certificates for resource delegations
- Delegated model:
 - Member becomes the CA (delegated by the parent CA) and operates the full RPKI system
 - . JPNIC, TWNIC, CNNIC (IDNIC in progress)



Route Origin Validation (ROV)

(::**ʃ**::ʃ::ʃ::ʃ::ʃ::ʃ)

Route Origin Validation (ROV)

APNIC

Route Origin Validation

- Router fetches ROA information from the validated RPKI cache
 Crypto stripped by the validator
- BGP checks each received BGP update against the ROA information and labels them

Valid

□ the prefix (prefix length) and AS pair found in the database.

Invalid

prefix is found, but origin AS is wrong, OR
 the prefix length is longer than the maximum length

Not Found/Unknown

- No valid ROA found
 - Neither valid nor invalid (perhaps not created)

Validation States

	ASN	Prefix	Max Length
ROA -	65420	10.0.0.0/16	18
	BC	GP Routes	
	1		
ASN	Pref:	ix R	PKI State
65420	10.0.0.	0/16	VALID
65420	10.0.128	.0/17	VALID
65421	10.0.0.	0/16	INVALID
65420	10.0.10	.0/24	INVALID
65430	10.0.0	.0/8	NOT FOUND

Acting on Validation states

- Tag
 - □ If you have downstream customers or run a route server (IXP)
 - Ex:

[Valid (ASN:65XX0), Not Found (ASN:65XX1), Invalid (ASN:65XX2)]

• Modify preference values – RFC7115

[Valid > Not Found > Invalid]

• Drop Invalids

IPv4 ~ <mark>6K</mark> IPv6 ~ <mark>3K</mark>

RPKI ROV Configuration

Router Configuration (IOS)

- Enable RTR on your routers
 - eBGP speakers (border/peering/transit)
 - Know your platform defaults and knobs
 - . Example: IOS-XE wont use Invalids for best path selection

```
router bgp 131107
rpki server <validatorIP>
transport tcp port <323/3323/8282>
refresh-time <secs>
```

router bgp 131107
bgp rpki server tcp <validatorIP> port <323/8282/3323> refresh <secs>

Validation State

□ Tag & do nothing: You have downstream/route server @IXPs

[Valid (ASN:65XX0), Not Found (ASN:65XX1), Invalid (ASN:65XX2)]

□ RFC7115 – preference

[Valid > Not Found > Invalid]

Drop Invalids

IPv4 ~ 7K IPv6 ~ 2K

Configuration (IOS)

(::**ʃ::**ʃ::**ʃ**::

• Policies based on validation:

```
route-map ROUTE-VALIDATION permit 10
match rpki valid
set local-preference 200
!
route-map ROUTE-VALIDATION permit 20
match rpki not-found
set local-preference 100
!
route-map ROUTE-VALIDATION permit 30 OR route-map ROUTE-VALIDATION deny 30
match rpki invalid match rpki invalid
set local-preference 50
!
```


Configuration (IOS)

• Apply the route-map to inbound updates

```
router bgp 131107
!--output omitted-----!
address-family ipv4
bgp bestpath prefix-validate allow-invalid
neighbor X.X.X.169 activate
neighbor X.X.X.169 route-map ROUTE-VALIDATION in
exit-address-family
!
address-family ipv6
bgp bestpath prefix-validate allow-invalid
neighbor X6:X6:X6:X6::151 activate
neighbor X6:X6:X6::151 route-map ROUTE-VALIDATION in
exit-address-family
```


Router Configuration (JunOS)

• Establishing session with the validator

```
routing-options {
   autonomous-system 131107;
   validation {
     group rpki-validator {
        session <validator-IP> {
            refresh-time 120;
            port <323/3323/8282>;
            local-address X.X.X.253;
        }
    }
}
```



Configuration (JunOS)

• Define policies based on the validation states

```
policy-options {
   policy-statement ROUTE-VALIDATION {
       term valid {
                                                       term invalid {
           from {
                                                                  from {
               protocol bgp;
                                                                      protocol bgp;
               validation-database valid:
                                                                      validation-database invalid;
           then {
                                                                  then {
               local-preference 200;
                                                                      local-preference 50;
               validation-state valid;
                                                                      validation-state invalid;
               accept;
                                                                      accept;
       term unknown {
           from {
               protocol bgp;
               validation-database unknown;
                                                       OR
           then {
                                                                 then {
               local-preference 100;
                                                                      validation-state invalid:
               validation-state unknown:
                                                                      reject;
               accept;
```


Router Configuration (JunOS)

• Apply the policy to inbound updates

RPKI Verification (IOS)

• IOS has only

```
#show bgp ipv6 unicast rpki ?
  servers Display RPKI cache server information
  table Display RPKI table entries
```

```
#show bgp ipv4 unicast rpki ?
```

servers Display RPKI cache server information table Display RPKI table entries

RPKI Verification (IOS)

• Check the RTR session

```
#show bgp ipv4 unicast rpki servers
BGP SOVC neighbor is X.X.X.47/323 connected to port 323
Flags 64, Refresh time is 120, Serial number is 1516477445, Session ID is 8871
InQ has 0 messages, OutQ has 0 messages, formatted msg 7826
Session IO flags 3, Session flags 4008
Neighbor Statistics:
 Prefixes 45661
 Connection attempts: 1
 Connection failures: 0
Errors sent: 0
Errors received: 0
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Connection is ECN Disabled, Mininum incoming TTL 0, Outgoing TTL 255
Local host: X.X.X.225, Local port: 29831
Foreign host: X.X.X.47, Foreign port: 323
```


RPKI Verification (IOS)

(::**ʃ::**ʃ::**ʃ**::**ʃ**

Check the RPKI cache

#show bgp ipv4 unicast rpki table

37868 BGP sovc network entries using 6058880 bytes of memory 39655 BGP sovc record entries using 1268960 bytes of memory

Network	Maxlen	Origin-AS	Source	e Neighbor
1.9.0.0/16	24	4788	0	202.125.96.47/323
1.9.12.0/24	24	65037	0	202.125.96.47/323
1.9.21.0/24	24	24514	0	202.125.96.47/323
1.9.23.0/24	24	65120	0	202.125.96.47/323

#show bgp ipv6 unicast rpki table

5309 BGP sovc network entries using 976856 bytes of memory 6006 BGP sovc record entries using 192192 bytes of memory

Network	Maxlen	Origin-A	S Sour	ce Neighbor
2001:200::/32	32	2500	0	202.125.96.47/323
2001:200:136::/48	48	9367	0	202.125.96.47/323
2001:200:900::/40	40	7660	0	202.125.96.47/323
2001:200:8000::/35	35	4690	0	202.125.96.47/323

Check routes (IOS)

(::**]**::**]**::**]**::

RPKI Verification (JunOS)

• Check the RPKI cache

>show validation session					
Session	State	Flaps	Uptime	#IPv4/IPv6	records
X.X.X.46	Up	75	09:20:59	40894/6747	
>show validation session 202.125.96.46					
Session	State	Flaps	Uptime	#IPv4/IPv6	records
X.X.X.46	Up	75	5 09:21:1	8 40894/674	7

RPKI Verification (JunOS)

(::**ʃ**::ʃ::ʃ::ʃ::ʃ::ʃ

• Check the RPKI cache

>show validation database

RV database for instance master

Prefix 1.9.0.0/16-24 1.9.12.0/24-24 1.9.21.0/24-24 1.9.23.0/24-24	65037 24514	Session 202.125.96.46 202.125.96.46 202.125.96.46 202.125.96.46	Stat valid valid valid valid	e Mismatch.
2001:200::/32-32 2001:200:136::/48-48 2001:200:900::/40-40 2001:200:8000::/35-3 2001:200:c000::/35-3 2001:200:e000::/35-3	936 ⁻ 7660 5 4690 5 23634	<pre>202.125.96.46 202.125.96.46 202.125.96.46 202.125.96.46 202.125.96.46 202.125.96.46 202.125.96.46</pre>	valid valid valid valid valid valid	

Would have been nice if per AF!

RPKI Verification (JunOS)

• Can filter per origin ASN

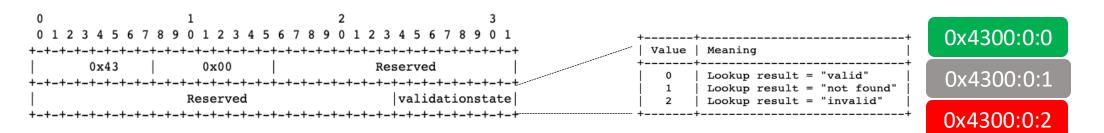
>show	validation	database	origin-autonomous-system	45192
-------	------------	----------	--------------------------	-------

RV database for instance master

Prefix	Origin-AS	Session	State	Mismatch
202.125.97.0/24-24	45192	202.125.96.46	valid	
203.176.189.0/24-24	45192	202.125.96.46	valid	
2001:df2:ee01::/48-4	8 45192	202.125.96.46	valid	

IPv4 records: 2 IPv6 records: 1

Check routes (JunOS)



>show route protocol bgp 2001:201::/32

Propagating RPKI states to iBGP peers

- To avoid every BGP speaker having an RTR session, and
- Ensure all BGP speakers have consistent information
 - Relies on non-transitive extended BGP community (RFC8097)

- Sender (one with RTR session) attaches the extended community to Updates, and receiver derives the validation states from it
- Must be enabled on both sender and receiver!

Propagating RPKI states (IOS)

• Sender (one with RTR session)

```
router bgp 131107
bgp rpki server tcp <validator-IP> port <323/8282/3323> refresh 120
!---output omitted-----!
address-family ipv4
 neighbor X.X.X.X activate
 neighbor X.X.X.X send-community both
 neighbor X.X.X.X announce rpki state
exit-address-family
 address-family ipv6
 neighbor X6:X6:X6:X6:X6 activate
 neighbor X6:X6:X6:X6::X6 send-community both
 neighbor X6:X6:X6:X6::X6 announce rpki state
exit-address-family
```


Propagating RPKI states (IOS)

(::**ʃ**::ʃ::ʃ

Receiver (iBGP peer)

```
router bgp 131107
!---output omitted-----!
address-family ipv4
neighbor Y.Y.Y.Y activate
neighbor Y.Y.Y.Y send-community both
neighbor Y.Y.Y.Y announce rpki state
exit-address-family
!
address-family ipv6
neighbor Y6:Y6:Y6:Y6:Y6 activate
neighbor Y6:Y6:Y6:Y6:Y6 send-community both
neighbor Y6:Y6:Y6:Y6:Y6:Y6 announce rpki state
exit-address-family
!
```

• If announce rpki state is not configured for the neighbor, all prefixes received from the iBGP neighbor will be marked VALID!

Propagating RPKI states (JunOS)

(::**ʃ**::ʃ::ʃ

• Sender (router with an RTR session)

```
policy-statement ROUTE-VALIDATION {
    term valid {
        from {
            protocol bqp;
            validation-database valid:
        then {
            local-preference 200;
            validation-state valid;
            community add origin-validation-state-valid;
            accept;
    term invalid {
        from {
            protocol bqp;
            validation-database invalid;
        then {
            local-preference 50;
            validation-state invalid;
            community add origin-validation-state-invalid;
            accept;
```

```
term unknown {
    from {
        protocol bgp;
        validation-database unknown;
    }
    then {
        local-preference 100;
        validation-state unknown;
        community add origin-validation-state-unknown;
        accept;
    }
}
```


Propagating RPKI states (JunOS)

• Receiver (iBGP peer)

```
policy-statement ROUTE-VALIDATION-1 {
   term valid {
      from community origin-validation-state-valid;
      then validation-state valid;
   }
   term invalid {
      from community origin-validation-state-invalid;
      then validation-state invalid;
   }
   term unknown {
      from community origin-validation-state-unknown;
      then validation-state unknown;
   }
}
```


Any questions?

