Reverse DNS for Network Engineers

MMIX-MMNOG7

Champika Wijayatunga Technical Engagement Sr. Manager – APAC

22 March 2025

Introduction

Forward DNS is what most people are describing when they talk about "the DNS":

- www.icann.org is hosted at the IP address 192.0.32.7
- Humans do not want to have to memorize IP addresses
- The Domain Name System (DNS) maps semantic names (easily understood by humans) to these IP addresses

DNS Hierarchy

Reverse DNS is the opposite of forward DNS:

● 192.0.33.71 maps to ICANN's mail server **pechora1.icann.org**.

In operational networks, reverse DNS has two use cases relevant to network engineers:

- ⊙ Authentication of mail server hostnames
- Marking network elements to make tools like traceroute more useful to humans

Resolving DNS Queries: Important Concepts

DNS Components and DNS Resolution

Resolving Reverse DNS Queries

A Practical Use of Reverse DNS: Mail Server Authentication

• ICANN's mail server is **pechora1.icann.org** and it is hosted on IP address:

o **192.0.33.71**

- When mail is delivered via SMTP, the originating mail server presents its credentials to the destination mail server. ["Hi! I'm the mail server pechoral.icann.org!"]
- One of the useful mechanisms to combat spam is to authenticate those credentials, to ensure the mail server credentials are genuine (not forged)
- To authenticate the credentials, the destination mail server performs a reverse DNS lookup of the IP address of the originating mail server it is connected to. ["I know that the host 192.0.33.71 is connected to me and is trying to deliver mail to me. It claims it is the mail server pechora1.icann.org. Let me perform a reverse DNS lookup to see if these two statements reconcile."]

So how do we do that?

- The reverse DNS TLD is in the .ARPA TLD
- ⊙ It has an IPv4 version: in-addr.arpa
- It has an IPv6 version: ip6.arpa
- $\odot\,$ The reverse domain is appended to the IP address:
 - 71.33.0.192.in-addr.arpa.
 - But why???

⊙ Forward DNS resolution goes from right to left:

o www.example.com.

- Conceptually, note that it is also going from least specific to more specific
 - \circ "." encompasses the entire name space
 - $\circ\,$.com represents the entire .com TLD
 - o example.com covers the entire example domain
 - www.example.com is a specific host

Reverse DNS from Least to Most Specific: IPv4

- The least specific zone in an IPv4 name space is a /8 zone:
 192.in-addr.arpa covers all reverse DNS zones for addresses in 192.0.0.0/8
- The next least specific zone in an IPv4 name space is a /16 zone:
 0.192.in-addr.arpa covers all reverse DNS zones for addresses in 192.0.0/16
- As expected, the next zone boundary in IPv4 is for the /24 zone:
 33.0.192.in-addr.arpa covers all reverse DNS zones for addresses in 192.0.33.0/24

By the way ... notice that we left out all leading .0 octets in our zone names

- ⊙ 0.0.0.192.in-addr.arpa is incorrect
- ⊙ 192.in-addr.arpa is correct

• In IPv6 reverse DNS, zone boundaries are defined on the *nibble boundary*

- In classical computer science, a "nibble" is any four-bit aggregation
- IPv6 lends itself nicely to nibble boundaries, because it is represented as eight 16-bit quartets:

____;___;____;____;____;____;____;____;___

Each underscore represents 4-bits:

2001: DB80: 0000: 0000: 0000: 0000: 0000: 0000: 0000: 0000

- Each number, therefore, is a nibble boundary, so each number signifies a zone boundary for reverse DNS
- Similar to IPv4, we reverse the numbers when defining reverse DNS zones.
 0.8.b.d.1.0.0.2.ip6.arpa is the reverse zone for 2001:db8::/32
- Leading zeros are important, because the reverse zone's domain must mathematically match the number of bits it represents

- Under the current allocation practices agreed upon by IANA and the RIRs, the IANA delegates /12 blocks to each RIR as needed
- In 2006, IANA delegated 2400::/12 for APNIC to issue to its customers
- APNIC is therefore responsible for the delegation of reverse DNS at the /12 boundary:
 0.4.2.ip6.arpa covers all reverse DNS zones for addresses in 2400::/12
- APNIC often issues /32s to customers
- A customer is delegated reverse DNS at the /32 boundary:
 0.8.b.7.0.0.4.2.ip6.arpa covers all reverse DNS zones for addresses in 2400:7b8::/32

- ⊙ When discussing forward DNS, we were resolving A records and AAAA records, which resolve a domain name to an IP address
- \odot In reverse DNS, the RR type is PTR:
 - "Pointer" record
 - Resolves a domain name that ends in in-addr.arpa or ip6.arpa that represents an IP address into a fully-qualified domain name
 - (It requires a FQDN, so the trailing dot is necessary in the zone file!)

More About Zone Delegations

Reminder:

- In IPv4, zones are delegated at either the /8, the /16, or the /24 boundary
- In IPv6, zones are delegated on the nibble boundary

○ If you have a /24, you configure a reverse domain in your zone files for the /24

\$TTL 2d	; 172800 seconds	
\$ORIGIN	3.2.1.IN-ADDR.ARF	Α.
0	IN SOA	<pre>nsl.example.com. hostmaster.example.com. (2013010304 ; serial number 3h ; refresh 15m ; update retry 3w ; expiry 3h ; nx = nxdomain ttl)</pre>
	IN NS	nsl.example.com.
	IN NS	ns2.example.com.
4	IN PTR	mysite.net.
; etc		

◎ If you have a /20, you configure sixteen reverse domains – one for each /24 - in your zone files

- \odot /24 = 1 reverse domain
- \odot /23 = 2 reverse domains
- \odot /22 = 4 reverse domains
- ⊙ [...]
- \odot /18 = 64 reverse domains
- \odot /17 = 128 reverse domains

- If you are the registrant of a /16, simply insert a new level of hierarchy:
 Configure a /16 reverse domain with authoritative NSes
- Then configure the individual /24 reverse domain zone files
- If you are the registrant of a /15, configure two /16 reverse domains, and then configure two sets of 256 /24 reverse domain zone files

- A /32 is the default size for LIRs. It acts just like a /16 in IPv4. You answer for the /32, then define individual reverse domains as necessary – respecting the nibble boundaries.
- ⊙ If you have a /48 or something smaller, the RIR will respond to the /32, and delegate the individual /48s or /44s (etc.) to your name servers

CNAMES and Really Small Zones

- Delegation boundaries are easy to respect as an LIR. But what about your customers who need reverse DNS for small address blocks (e.g. a /28 in IPv4)?
- \odot There can only be one delegation by the RIR for each /24
- To overcome this restriction, we use the CANONICAL NAME (CNAME) RR type
 - "An alias name for a host. Causes redirection for a single RR at the owner-name."
- ⊙ In reverse DNS, RFC2317 was written to define how to use CNAME RRs in reverse DNS zone files to handle address blocks smaller than a /24

Engage with ICANN – Thank You and Questions

